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Simulation study of high voltage GaN MISFETs with
embedded PN junction∗
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In this paper, we propose a new enhanced GaN MISFET with embedded pn junction, i.e., EJ-MISFET, to enhance the
breakdown voltage. The embedded pn junction is used to improve the simulated device electric field distribution between
gate and drain, thus achieving an enhanced breakdown voltage (BV). The proposed simulated device with LGD = 15 µm
presents an excellent breakdown voltage of 2050 V, which is attributed to the improvement of the device electric field
distribution between gate and drain. In addition, the ON-resistance (RON) of 15.37 Ω·mm and Baliga’s figure of merit
of 2.734 GW·cm−2 are achieved in the optimized EJ-MISFET. Compared with the field plate conventional GaN MISFET
(FPC-MISFET) without embedded pn junction structure, the proposed simulated device increases the BV by 32.54% and
the Baliga’s figure of merit is enhanced by 71.3%.
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1. Introduction
Gallium nitride (GaN)-based electronic devices have be-

come one of the most promising candidates for power ap-
plications. Owing to the strong polarization charge in the
AlGaN/GaN hetero-junction, high-density two-dimensional
electron gas (2DEG) is formed at the interface between GaN
and AlGaN.[1–5] It has drawn intensive attention for high volt-
age applications due to its wide band gap. However, it is
still a challenge to improve the breakdown voltage.[6] Like
the scenario in LDMOS, the peak electric field in GaN MIS-
FET is distributed in the device surface. Chen has made a
great contribution to the development of power device, and
he proposed a composite buffer layer structure which was
called COOLMOSTM.[7] Moreover, theoretical analysis on the
structure was reported in detail, and the structure was also
called the super junction. The super junction concept was
also known as super multi-RESURF.[8] So, the technologies
of RESURF were widely applied to power devices. Back
electrode has been used to realize RESURF GaN HEMT
in Ref. [9]. Field plate is also a common method to im-
prove the electric field distribution.[10] Source field plates,
gate field plates, and drain plates were used to improve
the electric field distribution between gate and drain.[11–15]

Some researchers demonstrated the GaN-based super HFETs
based on polarization junction concept and they have great
power characteristics.[16] Some researchers proposed a novel
enhancement-mode polarization-junction HEMT with vertical
conduction channel which has a uniform electric field distribu-

tion between source and drain.[17] Some researchers proposed
and experimentally demonstrated a high-breakdown-voltage
HEMT by implanting fluorine ions in a thick SiNx passivation
layer between the gate and drain. The fluorine ions in the pas-
sivation layer can extend the depletion region and improve the
average electric field between gate and drain.[18] A large gate
metal height was proposed to enhance breakdown voltage in
GaN-based HEMTs and the breakdown voltage enhancement
resulting from the increase of the gate sidewall capacitance
and depletion region extension.[19]

In this paper, we introduce an MISFET with embedded
pn junction (EJ-MISFET). The N-type layer and P-type layer
form a pn junction which is embedded in the barrier layer and
the buffer layer. To ensure the ON-resistance remains sta-
ble and consistent, a part of 2DEG is replaced with a highly
doped N-type layer. The P-type layer is embedded in the N-
type layer. The embedded pn junction improves the device’s
electric field distribution between the gate and the drain to en-
hance the breakdown voltage.

Additionally, the substrate of the conventional GaN MIS-
FET (C-MISFET), field plate conventional GaN MISFET
(FPC-MISFET) and proposed EJ-MISFET are removed for
suppressing the vertical leakage current through substrate.[20]

With the same parameter, the authors in Ref. [21] showed
the experimental results. In the present paper, we propose
a new architecture to improve the breakdown voltage of the
simulated device. We simulate the structure by using Sentau-
rus TCAD tools,[22] verifying that the proposed EJ-MISFET
structure provides higher breakdown voltage than the conven-
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tional one with field plates.

2. Proposed structure and principle
Figures 1(a) and 1(b) illustrate the architecture of the

FPC-MISFET and the EJ-MISFET, respectively. The param-
eters of the FPC-MISFET without field plate are the same as
those of the GaN-on-Si sample in Ref. [21]. The epitaxial lay-
ers each consist of 2.4-µm Al-containing transition layer, 1.6-
µm GaN buffer layer, and 21-nm AlGaN barrier layer. The
mole fraction of the AlGaN barrier in the FPC-MISFET and
that in the EJ-MISFET are both 0.25. The unintentionally
doped (UID) GaN buffer layer is doped with 1× 1015 cm−3

N-type concentration.[23] For the two structures the fully re-
cessed gate technique is used, and the Si3N4 is chosen as the
gate dielectric and passivation layer. The thickness of the gate
dielectric and the passivation layer are 17 nm and 100 nm re-
spectively.
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Si substrate
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Fig. 1. Schematic diagram of (a) FPC-MISFET and (b) EJ-MISFET.

The details of key structural parameters of FPC-MISFET
and proposed EJ-MISFET are summarized in Table 1. Figure 2
shows the brief steps of fabrication processes for the proposed
structure, and the step for each graph may be summarized as
follows.

(i) Growing transition layer on a silicon (111) substrate,
then growing a buffer layer and an AlGaN barrier layer on the
transition layer in turn by MOCVD.[21,24]

(ii) Forming SiO2 as the etching mask by using plasma-
enhanced chemical vapor deposition.[25,26]

(iii) Etching AlGaN barrier layer and GaN buffer layer by
transformer-coupled-plasma reactive ion etching in a BCl3/Cl2
gas mixture.[27]

(iv) Performing a combination of UV-ozone cleaning and
HF + HCl wet etch to reduce impurity concentration at the

etched surface, and the N-typer layer and P-type layer are re-
grown by MBE.[28,29]

(v) Depositing a SiO2 mask on the top of P-type layer by
using the plasma-enhanced chemical vapor deposition, form-
ing an N-type layer by using Si ion implantation.[30,31]

(vi) After implantation, removing the SiO2 mask by us-
ing the hydrofluoric acid followed by a postimplantation an-
nealing to activate the implanted Si and removing the surface
native oxide on the sample with minimum surface damage by
using in situ remote plasma pretreatment (RPP) and depositing
Si3N4 as passivation layer by using plasma-enhanced chemi-
cal vapor deposition.[24,32]

(vii) Etching Si3N4 by inductively coupled plasma (ICP)
and achieving the gate recess by a low-power ICP dry-etch.[24]

(viii) Depositing Si3N4 as gate dielectric by using plasma-
enhanced chemical vapor deposition.

(ix) Forming gate electrode and forming an ohmic contact
source electrode and an ohmic contact drain electrode.

Table 1. Key structural parameters.

Parameters Unit Values

Distance from source to gate (LSG) µm 2
Gate length (LG) µm 1.5
Gate field plate length (LGFP) µm 3
Drain field plate length (LDFP) µm 0.5
Distance from gate to drain (LGD) µm 15
Thickness of gate dielectric (TGd) nm 17
Thickness of passivation layer (Tpass) nm 100
Thickness of Al0.25Ga0.75N barrier layer (Tbar) nm 21
Thickness of GaN buffer layer (Tbuff) µm 1.6
Thickness of Al-containing transition layer (Ttransition) µm 2.4
Distance from gate to N-type layer (LGN) µm 13
Distance from N-type layer to P-type layer (LPN) µm 0.01
N-type layer length (WN) µm 1.5
Thickness of N-type layer (HN) nm 41
Thickness of P-type layer (HP) nm 31
P-type layer doping concentration (NP+) cm−3 1×1017

N-type layer doping concentration (NN+) cm−3 1×1019

GaN buffer doping concentration (Nbuff) cm−3 1×1015
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Fig. 2. Schematic diagram of fabrication steps for proposed structure.
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To achieve more accurate simulations, we select some
suitable physical models which were widely used, such as
the Recombination models, e.g., Shockley–Read–Hall (SRH)
model and Auger model, and the mobility models, e.g.,
DopingDep model and high-field-saturation model.[33] Be-
sides, the polarization effects of AlGaN and GaN are calcu-
lated by the piezoelectric polarization (strain) model.[34] The
thermionic model is used to account for the self-heating ef-
fect on the assumption that the charge carriers are in thermal
equilibrium with the lattice. The avalanche model is used to
simulate the device breakdown.

Figure 3(a) shows the comparison of ID–VDS character-
istic between the experimental results by Tang et al.[21] and
simulation results by TCAD, for VDS = 10 V and VGS = 2 V,
4 V, 6 V, 8 V, and 10 V. From this figure we can see that the
ID–VDS characteristics with different values of VGS fit well with
the experimental results[21] and the RON of 14.98 Ω· mm from
TCAD simulation by sentaurus is close to that of 16.1 Ω·mm
from experimental results.

Figure 3(b) shows the blocking characteristics between
TCAD simulation and experiments. The breakdown voltage of
simulated device is close to the experimental result. Because
the field plates have a great effect on blocking characteristics,
we prefer to select optimized field plates conventional MIS-
FET for comparison.
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Fig. 3. (a) The ID–VDS characteristic curves and (b) blocking characteristic
cuves from simulation and experiment to validate effectiveness of models
used in simulation.

3. Results and discussion
Figure 4 shows the plots of the comparison of the de-

vice channel electric field distributions on condition that three
types of GaN MISFETs are breakdown. This figure shows
a high electric field accumulating on the drain side in the
gate electrode corner for the C-MISFET. For the C-MISFET,
the peak of the electric field near the gate reaches up to
4×106 V/cm which almost arrives at the critical electric field
of GaN material.[35] Therefore the device has been break-
down before the 2DEG is depleted completely. For the FPC-
MISFET, with the gate filed plate and drain field plate intro-
duced, the electric field near the gate sharply decreases and a
peak electric field appears at the position near the gate field
plate. Compared with the C-MISFET, the FPC-MISFET can
improve the electric field distribution between gate and drain.

For the GaN MISFET, the drain leakage current is mainly
composed of substrate-drain leakage current and source–drain
leakage current.[36] In Ref. [21], the floating substrate could
achieve higher device voltage rating and enable better dy-
namic RON for high drain bias switching operation. In the
present simulation, substrate is float, thus avoiding substrate-
drain leakage current. On the other hand, the source–drain
leakage current is mainly caused by the buffer leakage current.
When the N-type layer and P-type layer are introduced into
the FPC-MISFET, the N-type layer and unintentionally doped
GaN buffer layer form an N-/N+ junction which introduces
a peak electric field in the GaN buffer layer, thereby improv-
ing the device internal electric field distribution. The N-type
layer and P-type layer form an N/P junction, thus improving
the electric field distribution between gate and N-type layer.
Because of the P-type layer under the drain field plate, the
peak electric field near the drain field plate decreases sharply.
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Fig. 4. Channel electric field distribution of C-MISFET (without field
plates), FPC-MISFET, and EJ-MISFET.

Figure 5 shows the plots of the off-state characteristic of
the C-MISFET, FPC-MISFET, and EJ-MISFET, and also dis-
plays the comparison among the simulated off-state charac-
teristic curves at VGS = 0 V for the three architectures with

080701-3



Chin. Phys. B Vol. 29, No. 8 (2020) 080701

LGD = 15 µm. The breakdown voltage is defined as the voltage
at a drain current of 10−6 A/mm in the off-state. The simula-
tion breakdown voltage of the C-MISFET is 868.3 V, the sim-
ulation breakdown voltage of the FPC-MISFET is 1546.6 V
and the simulation breakdown voltage of the EJ-MISFET is
2050 V. It may be seen that with the introduction of the field
plates, the blocking capability of the C-MSIFET increases to
a certain extent. And, the embedded pn junction helps the
FPC-MISFET further improve the breakdown characteristic.
The simulation breakdown voltage of the FPC-MISFET is in-
creased by 32.54%.
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Fig. 5. Off-state breakdown voltage from simulation of C-MISFET (without
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The lateral electron density distribution in 2DEG is
shown in Fig. 6. To match the experimental results, 4.8 ×
1012 cm−3 trap is set to be in the face of the AlGaN/GaN
hetero-junction, and the 2DEG density N2DEG is assumed to
be 1.25×1019 cm−3. The density of P-type layer takes a value
of 1×1017 cm−3, which is enough to deplete the extra charge
generated by the N-type layer. The 2DEG in the P-type layer
region is replaced by the P-type layer. The P-type layer is
embedded in the N-type layer, thus cutting off a part of the
2DEG between gate and drain. The density of N-type layer
with a value of 1× 1019 cm−3, is close to the 2DEG density
(N2DEG). The distance from N-type layer to P-type layer (LPN)

is 0.01 µm, which is appropriate to realize low channel resis-
tance, although a part of 2DEG is replaced by N-type layer
and P-type layer.

Figure 7 shows the comparison of drain current curves
between the FPC-MISFET and EJ-MISFET for VDS = 10 V
and VGS = 2 V, 4 V, 6 V, 8 V, and 10 V. We see that the
current of EJ-MISFET is almost similar to that of the FPC-
MISFET. The GaN based electronic device output character-
istic is mainly determined by the density of 2DEG and the
channel current density. The FPC-MISFET and EJ-MISFET
have similar channel current densities. For the EJ-MISFET, a
highly doped N-type layer is used to replace a part of 2DEG
region. The concentration of N-type layer is close to the den-
sity of 2DEG that leads to a similar on-state current. The
RON of the EJ-MISFET with a value of 15.37 Ω·mm which
is slightly higher than that of the FPC-MISFET with a value
of 14.98 Ω·mm.
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Figure 8 shows the comparison of transfer characteris-
tic curve between the FPC-MISFET and the EJ-MISFET at
VDS = 1 V. The threshold voltages of both structures are both
about 1.7 V, and the threshold voltage is determined at IDS =

0.01 mA/mm. As is well known, the threshold voltage of the
GaN MISFET structure is mainly determined by the thickness
of gate dielectric and the space charge under the gate electrode.
The proposed EJ-MISFET structure has not any effect on the
thickness of gate dielectric nor the space charge under the gate
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electrode. Hence, the EJ-MISFET does not change the struc-
ture transfer characteristic. The EJ-MISFET structure adopts
highly doped N-type layer to replace a part of 2DEG, and the
current density between gate and drain decreases slightly.

Figure 9 shows the plot of VBK and RON versus NN+ for
optimized EJ-MISFET. The RON reaches a maximum when
NN+ is 6 × 1018 cm−3. As the doping of N-type layer in-
creases, the RON value decreases. When the doping of the
N-type layer reaches 1 × 1019 cm−3, the simulated device
breakdown voltage reaches the maximum value 2050 V and
the Baliga’s figure of merit (BFOM) tends to maximum and
reaches to a value of 2.734 GW·cm−2.
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Figure 10 shows the plot of VBK and RON versus LGN for
the optimized EJ-MISFET. When the length of LGN is 4 µm,
the VBK keeps a minimum 1500 V. With the increase of LGN,
the VBK increases almost lineraly. When the length of LGN in-
creases up to 13 µm, the VBK reaches the maximum 2050 V.
The trend of the corresponding calculated RON is maintained
within a narrow range, while the trend of the optimized BFOM
is consistent with that of optimized VBK. We achieve a maxi-
mum BFOM of 2.734 GW·cm−2 at LGN = 13 µm and NN+ =

1.0×1019 cm−3.
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Figure 11 shows the plot of VBK and RON versus WN for
the optimized EJ-MISFET. As WN rises, the breakdown volt-
age goes up. When WN = 1.5 µm, the breakdown voltage
reaches the saturation value 2050 V. With the increase of WN,
more 2DEGs are produced by N-type layer, the RON increases

gradually. Figure 12 shows the plot of VBK and RON versus
HN for the optimized EJ-MISFET. The VBK and RON decrease
with HN increasing.
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Figure 13 show the plot of VBK and RON versus HP for
the optimized EJ-MISFET. With HP increasing, the breakdown
voltage first rises and then falls. Larger HP means that lower
HN causes RON to rise with HP increasing. When HP = 31 nm,
the breakdown voltage reaches the maximum value 2050 V.
Figure 14 shows the plot of VBK and RON versus of the opti-
mized EJ-MISFET. With NP increasing, the breakdown volt-
age first rises slightly and then drops down. The RON keeps
rising with NP increasing. More N-type layers will be de-
pleted and the breakdown voltage fluctuations are maintained
in a small range of the voltage margin when increasing doping
concentration of P-type layer. Summarized in Table 1 are the
performances of the devices in this paper and other reported
normally-off GaN devices.
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Summarized in Table 2 are the performances of the de-
vices in this paper and other reported normally-off GaN de-
vices. It is obvious that the proposed EJ-MISFET shows the
highest VBK in these reported normally-off GaN device results.
It indicates the EJ-MISFET structure has excellent potential
applications in high power devices.

Table 2..Comparison of device characteristic between device in this pa-
per and other reported GaN devices.

VBK/V@1 µA/mm RON/Ω·mm References

868 14.98 C-MISFET
1546 14.98 FPC-MISFET
2050 15.37 EJ-MISFET
650 13.2 [24]

1290 10.3 [37]
1400 9.2 [38]
1456 10.1 [39]
1528 13.3 [40]

4. Conclusions
We investigated the behavior of the GaN MISFET struc-

ture with embedded pn junction which realizes the improve-
ment of the device electric field distribution. It is shown that
the breakdown voltage of the proposed EJ-MISFET reaches up
to 2050 V. Compared with the FPC-MISFET, the EJ-MISFET
provides 32.54% improvement in the breakdown voltage. The
RON of the proposed EJ-MISFET is 15.37 Ω·mm. The transfer
characteristic keeps almost the same and the VTH values of two
structures are both 1.7 V. The optimized device with LGN =

13 µm exhibits a high power BFOM of 2.734 GW·cm−2, VBK

of 2050 V, and an RON of 15.37 Ω·mm. Compared with that
of the FPC-MISFET, the Baliga’s figure of merit of the EJ-
MISFET is enhanced by 71.3%.
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